Copied to
clipboard

G = C5×C23.11D4order 320 = 26·5

Direct product of C5 and C23.11D4

direct product, metabelian, nilpotent (class 2), monomial, 2-elementary

Aliases: C5×C23.11D4, (C2×C20).310D4, C24.8(C2×C10), C23.10(C5×D4), C22.73(D4×C10), (C22×C10).29D4, C2.C425C10, (C23×C10).8C22, C10.140(C4⋊D4), C10.69(C4.4D4), (C22×C20).35C22, C23.80(C22×C10), C10.35(C422C2), (C22×C10).461C23, C10.91(C22.D4), (C2×C4⋊C4)⋊7C10, (C10×C4⋊C4)⋊34C2, (C2×C4).17(C5×D4), C2.9(C5×C4⋊D4), C2.7(C5×C4.4D4), (C2×C10).613(C2×D4), (C2×C22⋊C4).7C10, (C22×C4).8(C2×C10), C2.5(C5×C422C2), C22.40(C5×C4○D4), (C10×C22⋊C4).29C2, (C5×C2.C42)⋊7C2, (C2×C10).221(C4○D4), C2.7(C5×C22.D4), SmallGroup(320,898)

Series: Derived Chief Lower central Upper central

C1C23 — C5×C23.11D4
C1C2C22C23C22×C10C22×C20C10×C22⋊C4 — C5×C23.11D4
C1C23 — C5×C23.11D4
C1C22×C10 — C5×C23.11D4

Generators and relations for C5×C23.11D4
 G = < a,b,c,d,e,f | a5=b2=c2=d2=e4=1, f2=c, ab=ba, ac=ca, ad=da, ae=ea, af=fa, ebe-1=bc=cb, bd=db, fbf-1=bcd, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef-1=e-1 >

Subgroups: 314 in 170 conjugacy classes, 70 normal (30 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C5, C2×C4, C2×C4, C23, C23, C23, C10, C10, C10, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C24, C20, C2×C10, C2×C10, C2×C10, C2.C42, C2.C42, C2×C22⋊C4, C2×C22⋊C4, C2×C4⋊C4, C2×C20, C2×C20, C22×C10, C22×C10, C22×C10, C23.11D4, C5×C22⋊C4, C5×C4⋊C4, C22×C20, C22×C20, C23×C10, C5×C2.C42, C5×C2.C42, C10×C22⋊C4, C10×C22⋊C4, C10×C4⋊C4, C5×C23.11D4
Quotients: C1, C2, C22, C5, D4, C23, C10, C2×D4, C4○D4, C2×C10, C4⋊D4, C22.D4, C4.4D4, C422C2, C5×D4, C22×C10, C23.11D4, D4×C10, C5×C4○D4, C5×C4⋊D4, C5×C22.D4, C5×C4.4D4, C5×C422C2, C5×C23.11D4

Smallest permutation representation of C5×C23.11D4
On 160 points
Generators in S160
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)(61 62 63 64 65)(66 67 68 69 70)(71 72 73 74 75)(76 77 78 79 80)(81 82 83 84 85)(86 87 88 89 90)(91 92 93 94 95)(96 97 98 99 100)(101 102 103 104 105)(106 107 108 109 110)(111 112 113 114 115)(116 117 118 119 120)(121 122 123 124 125)(126 127 128 129 130)(131 132 133 134 135)(136 137 138 139 140)(141 142 143 144 145)(146 147 148 149 150)(151 152 153 154 155)(156 157 158 159 160)
(6 19)(7 20)(8 16)(9 17)(10 18)(21 34)(22 35)(23 31)(24 32)(25 33)(56 94)(57 95)(58 91)(59 92)(60 93)(61 82)(62 83)(63 84)(64 85)(65 81)(71 90)(72 86)(73 87)(74 88)(75 89)(76 110)(77 106)(78 107)(79 108)(80 109)(96 121)(97 122)(98 123)(99 124)(100 125)(101 135)(102 131)(103 132)(104 133)(105 134)(111 149)(112 150)(113 146)(114 147)(115 148)(116 126)(117 127)(118 128)(119 129)(120 130)(136 145)(137 141)(138 142)(139 143)(140 144)(151 160)(152 156)(153 157)(154 158)(155 159)
(1 45)(2 41)(3 42)(4 43)(5 44)(6 140)(7 136)(8 137)(9 138)(10 139)(11 53)(12 54)(13 55)(14 51)(15 52)(16 141)(17 142)(18 143)(19 144)(20 145)(21 155)(22 151)(23 152)(24 153)(25 154)(26 69)(27 70)(28 66)(29 67)(30 68)(31 156)(32 157)(33 158)(34 159)(35 160)(36 46)(37 47)(38 48)(39 49)(40 50)(56 81)(57 82)(58 83)(59 84)(60 85)(61 95)(62 91)(63 92)(64 93)(65 94)(71 109)(72 110)(73 106)(74 107)(75 108)(76 86)(77 87)(78 88)(79 89)(80 90)(96 121)(97 122)(98 123)(99 124)(100 125)(101 135)(102 131)(103 132)(104 133)(105 134)(111 149)(112 150)(113 146)(114 147)(115 148)(116 126)(117 127)(118 128)(119 129)(120 130)
(1 12)(2 13)(3 14)(4 15)(5 11)(6 144)(7 145)(8 141)(9 142)(10 143)(16 137)(17 138)(18 139)(19 140)(20 136)(21 159)(22 160)(23 156)(24 157)(25 158)(26 50)(27 46)(28 47)(29 48)(30 49)(31 152)(32 153)(33 154)(34 155)(35 151)(36 70)(37 66)(38 67)(39 68)(40 69)(41 55)(42 51)(43 52)(44 53)(45 54)(56 94)(57 95)(58 91)(59 92)(60 93)(61 82)(62 83)(63 84)(64 85)(65 81)(71 90)(72 86)(73 87)(74 88)(75 89)(76 110)(77 106)(78 107)(79 108)(80 109)(96 134)(97 135)(98 131)(99 132)(100 133)(101 122)(102 123)(103 124)(104 125)(105 121)(111 130)(112 126)(113 127)(114 128)(115 129)(116 150)(117 146)(118 147)(119 148)(120 149)
(1 146 66 121)(2 147 67 122)(3 148 68 123)(4 149 69 124)(5 150 70 125)(6 85 23 110)(7 81 24 106)(8 82 25 107)(9 83 21 108)(10 84 22 109)(11 116 36 104)(12 117 37 105)(13 118 38 101)(14 119 39 102)(15 120 40 103)(16 95 33 88)(17 91 34 89)(18 92 35 90)(19 93 31 86)(20 94 32 87)(26 99 43 111)(27 100 44 112)(28 96 45 113)(29 97 41 114)(30 98 42 115)(46 133 53 126)(47 134 54 127)(48 135 55 128)(49 131 51 129)(50 132 52 130)(56 153 73 136)(57 154 74 137)(58 155 75 138)(59 151 71 139)(60 152 72 140)(61 158 78 141)(62 159 79 142)(63 160 80 143)(64 156 76 144)(65 157 77 145)
(1 136 45 7)(2 137 41 8)(3 138 42 9)(4 139 43 10)(5 140 44 6)(11 19 53 144)(12 20 54 145)(13 16 55 141)(14 17 51 142)(15 18 52 143)(21 68 155 30)(22 69 151 26)(23 70 152 27)(24 66 153 28)(25 67 154 29)(31 46 156 36)(32 47 157 37)(33 48 158 38)(34 49 159 39)(35 50 160 40)(56 96 81 121)(57 97 82 122)(58 98 83 123)(59 99 84 124)(60 100 85 125)(61 101 95 135)(62 102 91 131)(63 103 92 132)(64 104 93 133)(65 105 94 134)(71 111 109 149)(72 112 110 150)(73 113 106 146)(74 114 107 147)(75 115 108 148)(76 116 86 126)(77 117 87 127)(78 118 88 128)(79 119 89 129)(80 120 90 130)

G:=sub<Sym(160)| (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120)(121,122,123,124,125)(126,127,128,129,130)(131,132,133,134,135)(136,137,138,139,140)(141,142,143,144,145)(146,147,148,149,150)(151,152,153,154,155)(156,157,158,159,160), (6,19)(7,20)(8,16)(9,17)(10,18)(21,34)(22,35)(23,31)(24,32)(25,33)(56,94)(57,95)(58,91)(59,92)(60,93)(61,82)(62,83)(63,84)(64,85)(65,81)(71,90)(72,86)(73,87)(74,88)(75,89)(76,110)(77,106)(78,107)(79,108)(80,109)(96,121)(97,122)(98,123)(99,124)(100,125)(101,135)(102,131)(103,132)(104,133)(105,134)(111,149)(112,150)(113,146)(114,147)(115,148)(116,126)(117,127)(118,128)(119,129)(120,130)(136,145)(137,141)(138,142)(139,143)(140,144)(151,160)(152,156)(153,157)(154,158)(155,159), (1,45)(2,41)(3,42)(4,43)(5,44)(6,140)(7,136)(8,137)(9,138)(10,139)(11,53)(12,54)(13,55)(14,51)(15,52)(16,141)(17,142)(18,143)(19,144)(20,145)(21,155)(22,151)(23,152)(24,153)(25,154)(26,69)(27,70)(28,66)(29,67)(30,68)(31,156)(32,157)(33,158)(34,159)(35,160)(36,46)(37,47)(38,48)(39,49)(40,50)(56,81)(57,82)(58,83)(59,84)(60,85)(61,95)(62,91)(63,92)(64,93)(65,94)(71,109)(72,110)(73,106)(74,107)(75,108)(76,86)(77,87)(78,88)(79,89)(80,90)(96,121)(97,122)(98,123)(99,124)(100,125)(101,135)(102,131)(103,132)(104,133)(105,134)(111,149)(112,150)(113,146)(114,147)(115,148)(116,126)(117,127)(118,128)(119,129)(120,130), (1,12)(2,13)(3,14)(4,15)(5,11)(6,144)(7,145)(8,141)(9,142)(10,143)(16,137)(17,138)(18,139)(19,140)(20,136)(21,159)(22,160)(23,156)(24,157)(25,158)(26,50)(27,46)(28,47)(29,48)(30,49)(31,152)(32,153)(33,154)(34,155)(35,151)(36,70)(37,66)(38,67)(39,68)(40,69)(41,55)(42,51)(43,52)(44,53)(45,54)(56,94)(57,95)(58,91)(59,92)(60,93)(61,82)(62,83)(63,84)(64,85)(65,81)(71,90)(72,86)(73,87)(74,88)(75,89)(76,110)(77,106)(78,107)(79,108)(80,109)(96,134)(97,135)(98,131)(99,132)(100,133)(101,122)(102,123)(103,124)(104,125)(105,121)(111,130)(112,126)(113,127)(114,128)(115,129)(116,150)(117,146)(118,147)(119,148)(120,149), (1,146,66,121)(2,147,67,122)(3,148,68,123)(4,149,69,124)(5,150,70,125)(6,85,23,110)(7,81,24,106)(8,82,25,107)(9,83,21,108)(10,84,22,109)(11,116,36,104)(12,117,37,105)(13,118,38,101)(14,119,39,102)(15,120,40,103)(16,95,33,88)(17,91,34,89)(18,92,35,90)(19,93,31,86)(20,94,32,87)(26,99,43,111)(27,100,44,112)(28,96,45,113)(29,97,41,114)(30,98,42,115)(46,133,53,126)(47,134,54,127)(48,135,55,128)(49,131,51,129)(50,132,52,130)(56,153,73,136)(57,154,74,137)(58,155,75,138)(59,151,71,139)(60,152,72,140)(61,158,78,141)(62,159,79,142)(63,160,80,143)(64,156,76,144)(65,157,77,145), (1,136,45,7)(2,137,41,8)(3,138,42,9)(4,139,43,10)(5,140,44,6)(11,19,53,144)(12,20,54,145)(13,16,55,141)(14,17,51,142)(15,18,52,143)(21,68,155,30)(22,69,151,26)(23,70,152,27)(24,66,153,28)(25,67,154,29)(31,46,156,36)(32,47,157,37)(33,48,158,38)(34,49,159,39)(35,50,160,40)(56,96,81,121)(57,97,82,122)(58,98,83,123)(59,99,84,124)(60,100,85,125)(61,101,95,135)(62,102,91,131)(63,103,92,132)(64,104,93,133)(65,105,94,134)(71,111,109,149)(72,112,110,150)(73,113,106,146)(74,114,107,147)(75,115,108,148)(76,116,86,126)(77,117,87,127)(78,118,88,128)(79,119,89,129)(80,120,90,130)>;

G:=Group( (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120)(121,122,123,124,125)(126,127,128,129,130)(131,132,133,134,135)(136,137,138,139,140)(141,142,143,144,145)(146,147,148,149,150)(151,152,153,154,155)(156,157,158,159,160), (6,19)(7,20)(8,16)(9,17)(10,18)(21,34)(22,35)(23,31)(24,32)(25,33)(56,94)(57,95)(58,91)(59,92)(60,93)(61,82)(62,83)(63,84)(64,85)(65,81)(71,90)(72,86)(73,87)(74,88)(75,89)(76,110)(77,106)(78,107)(79,108)(80,109)(96,121)(97,122)(98,123)(99,124)(100,125)(101,135)(102,131)(103,132)(104,133)(105,134)(111,149)(112,150)(113,146)(114,147)(115,148)(116,126)(117,127)(118,128)(119,129)(120,130)(136,145)(137,141)(138,142)(139,143)(140,144)(151,160)(152,156)(153,157)(154,158)(155,159), (1,45)(2,41)(3,42)(4,43)(5,44)(6,140)(7,136)(8,137)(9,138)(10,139)(11,53)(12,54)(13,55)(14,51)(15,52)(16,141)(17,142)(18,143)(19,144)(20,145)(21,155)(22,151)(23,152)(24,153)(25,154)(26,69)(27,70)(28,66)(29,67)(30,68)(31,156)(32,157)(33,158)(34,159)(35,160)(36,46)(37,47)(38,48)(39,49)(40,50)(56,81)(57,82)(58,83)(59,84)(60,85)(61,95)(62,91)(63,92)(64,93)(65,94)(71,109)(72,110)(73,106)(74,107)(75,108)(76,86)(77,87)(78,88)(79,89)(80,90)(96,121)(97,122)(98,123)(99,124)(100,125)(101,135)(102,131)(103,132)(104,133)(105,134)(111,149)(112,150)(113,146)(114,147)(115,148)(116,126)(117,127)(118,128)(119,129)(120,130), (1,12)(2,13)(3,14)(4,15)(5,11)(6,144)(7,145)(8,141)(9,142)(10,143)(16,137)(17,138)(18,139)(19,140)(20,136)(21,159)(22,160)(23,156)(24,157)(25,158)(26,50)(27,46)(28,47)(29,48)(30,49)(31,152)(32,153)(33,154)(34,155)(35,151)(36,70)(37,66)(38,67)(39,68)(40,69)(41,55)(42,51)(43,52)(44,53)(45,54)(56,94)(57,95)(58,91)(59,92)(60,93)(61,82)(62,83)(63,84)(64,85)(65,81)(71,90)(72,86)(73,87)(74,88)(75,89)(76,110)(77,106)(78,107)(79,108)(80,109)(96,134)(97,135)(98,131)(99,132)(100,133)(101,122)(102,123)(103,124)(104,125)(105,121)(111,130)(112,126)(113,127)(114,128)(115,129)(116,150)(117,146)(118,147)(119,148)(120,149), (1,146,66,121)(2,147,67,122)(3,148,68,123)(4,149,69,124)(5,150,70,125)(6,85,23,110)(7,81,24,106)(8,82,25,107)(9,83,21,108)(10,84,22,109)(11,116,36,104)(12,117,37,105)(13,118,38,101)(14,119,39,102)(15,120,40,103)(16,95,33,88)(17,91,34,89)(18,92,35,90)(19,93,31,86)(20,94,32,87)(26,99,43,111)(27,100,44,112)(28,96,45,113)(29,97,41,114)(30,98,42,115)(46,133,53,126)(47,134,54,127)(48,135,55,128)(49,131,51,129)(50,132,52,130)(56,153,73,136)(57,154,74,137)(58,155,75,138)(59,151,71,139)(60,152,72,140)(61,158,78,141)(62,159,79,142)(63,160,80,143)(64,156,76,144)(65,157,77,145), (1,136,45,7)(2,137,41,8)(3,138,42,9)(4,139,43,10)(5,140,44,6)(11,19,53,144)(12,20,54,145)(13,16,55,141)(14,17,51,142)(15,18,52,143)(21,68,155,30)(22,69,151,26)(23,70,152,27)(24,66,153,28)(25,67,154,29)(31,46,156,36)(32,47,157,37)(33,48,158,38)(34,49,159,39)(35,50,160,40)(56,96,81,121)(57,97,82,122)(58,98,83,123)(59,99,84,124)(60,100,85,125)(61,101,95,135)(62,102,91,131)(63,103,92,132)(64,104,93,133)(65,105,94,134)(71,111,109,149)(72,112,110,150)(73,113,106,146)(74,114,107,147)(75,115,108,148)(76,116,86,126)(77,117,87,127)(78,118,88,128)(79,119,89,129)(80,120,90,130) );

G=PermutationGroup([[(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60),(61,62,63,64,65),(66,67,68,69,70),(71,72,73,74,75),(76,77,78,79,80),(81,82,83,84,85),(86,87,88,89,90),(91,92,93,94,95),(96,97,98,99,100),(101,102,103,104,105),(106,107,108,109,110),(111,112,113,114,115),(116,117,118,119,120),(121,122,123,124,125),(126,127,128,129,130),(131,132,133,134,135),(136,137,138,139,140),(141,142,143,144,145),(146,147,148,149,150),(151,152,153,154,155),(156,157,158,159,160)], [(6,19),(7,20),(8,16),(9,17),(10,18),(21,34),(22,35),(23,31),(24,32),(25,33),(56,94),(57,95),(58,91),(59,92),(60,93),(61,82),(62,83),(63,84),(64,85),(65,81),(71,90),(72,86),(73,87),(74,88),(75,89),(76,110),(77,106),(78,107),(79,108),(80,109),(96,121),(97,122),(98,123),(99,124),(100,125),(101,135),(102,131),(103,132),(104,133),(105,134),(111,149),(112,150),(113,146),(114,147),(115,148),(116,126),(117,127),(118,128),(119,129),(120,130),(136,145),(137,141),(138,142),(139,143),(140,144),(151,160),(152,156),(153,157),(154,158),(155,159)], [(1,45),(2,41),(3,42),(4,43),(5,44),(6,140),(7,136),(8,137),(9,138),(10,139),(11,53),(12,54),(13,55),(14,51),(15,52),(16,141),(17,142),(18,143),(19,144),(20,145),(21,155),(22,151),(23,152),(24,153),(25,154),(26,69),(27,70),(28,66),(29,67),(30,68),(31,156),(32,157),(33,158),(34,159),(35,160),(36,46),(37,47),(38,48),(39,49),(40,50),(56,81),(57,82),(58,83),(59,84),(60,85),(61,95),(62,91),(63,92),(64,93),(65,94),(71,109),(72,110),(73,106),(74,107),(75,108),(76,86),(77,87),(78,88),(79,89),(80,90),(96,121),(97,122),(98,123),(99,124),(100,125),(101,135),(102,131),(103,132),(104,133),(105,134),(111,149),(112,150),(113,146),(114,147),(115,148),(116,126),(117,127),(118,128),(119,129),(120,130)], [(1,12),(2,13),(3,14),(4,15),(5,11),(6,144),(7,145),(8,141),(9,142),(10,143),(16,137),(17,138),(18,139),(19,140),(20,136),(21,159),(22,160),(23,156),(24,157),(25,158),(26,50),(27,46),(28,47),(29,48),(30,49),(31,152),(32,153),(33,154),(34,155),(35,151),(36,70),(37,66),(38,67),(39,68),(40,69),(41,55),(42,51),(43,52),(44,53),(45,54),(56,94),(57,95),(58,91),(59,92),(60,93),(61,82),(62,83),(63,84),(64,85),(65,81),(71,90),(72,86),(73,87),(74,88),(75,89),(76,110),(77,106),(78,107),(79,108),(80,109),(96,134),(97,135),(98,131),(99,132),(100,133),(101,122),(102,123),(103,124),(104,125),(105,121),(111,130),(112,126),(113,127),(114,128),(115,129),(116,150),(117,146),(118,147),(119,148),(120,149)], [(1,146,66,121),(2,147,67,122),(3,148,68,123),(4,149,69,124),(5,150,70,125),(6,85,23,110),(7,81,24,106),(8,82,25,107),(9,83,21,108),(10,84,22,109),(11,116,36,104),(12,117,37,105),(13,118,38,101),(14,119,39,102),(15,120,40,103),(16,95,33,88),(17,91,34,89),(18,92,35,90),(19,93,31,86),(20,94,32,87),(26,99,43,111),(27,100,44,112),(28,96,45,113),(29,97,41,114),(30,98,42,115),(46,133,53,126),(47,134,54,127),(48,135,55,128),(49,131,51,129),(50,132,52,130),(56,153,73,136),(57,154,74,137),(58,155,75,138),(59,151,71,139),(60,152,72,140),(61,158,78,141),(62,159,79,142),(63,160,80,143),(64,156,76,144),(65,157,77,145)], [(1,136,45,7),(2,137,41,8),(3,138,42,9),(4,139,43,10),(5,140,44,6),(11,19,53,144),(12,20,54,145),(13,16,55,141),(14,17,51,142),(15,18,52,143),(21,68,155,30),(22,69,151,26),(23,70,152,27),(24,66,153,28),(25,67,154,29),(31,46,156,36),(32,47,157,37),(33,48,158,38),(34,49,159,39),(35,50,160,40),(56,96,81,121),(57,97,82,122),(58,98,83,123),(59,99,84,124),(60,100,85,125),(61,101,95,135),(62,102,91,131),(63,103,92,132),(64,104,93,133),(65,105,94,134),(71,111,109,149),(72,112,110,150),(73,113,106,146),(74,114,107,147),(75,115,108,148),(76,116,86,126),(77,117,87,127),(78,118,88,128),(79,119,89,129),(80,120,90,130)]])

110 conjugacy classes

class 1 2A···2G2H2I4A···4L5A5B5C5D10A···10AB10AC···10AJ20A···20AV
order12···2224···4555510···1010···1020···20
size11···1444···411111···14···44···4

110 irreducible representations

dim11111111222222
type++++++
imageC1C2C2C2C5C10C10C10D4D4C4○D4C5×D4C5×D4C5×C4○D4
kernelC5×C23.11D4C5×C2.C42C10×C22⋊C4C10×C4⋊C4C23.11D4C2.C42C2×C22⋊C4C2×C4⋊C4C2×C20C22×C10C2×C10C2×C4C23C22
# reps133141212422108840

Matrix representation of C5×C23.11D4 in GL6(𝔽41)

1000000
0100000
0010000
0001000
0000100
0000010
,
100000
9400000
001000
0004000
000010
0000140
,
4000000
0400000
0040000
0004000
0000400
0000040
,
4000000
0400000
0040000
0004000
000010
000001
,
40230000
010000
000900
009000
0000402
000001
,
3200000
0320000
009000
0003200
00003218
000009

G:=sub<GL(6,GF(41))| [10,0,0,0,0,0,0,10,0,0,0,0,0,0,10,0,0,0,0,0,0,10,0,0,0,0,0,0,10,0,0,0,0,0,0,10],[1,9,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,1,1,0,0,0,0,0,40],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[40,0,0,0,0,0,23,1,0,0,0,0,0,0,0,9,0,0,0,0,9,0,0,0,0,0,0,0,40,0,0,0,0,0,2,1],[32,0,0,0,0,0,0,32,0,0,0,0,0,0,9,0,0,0,0,0,0,32,0,0,0,0,0,0,32,0,0,0,0,0,18,9] >;

C5×C23.11D4 in GAP, Magma, Sage, TeX

C_5\times C_2^3._{11}D_4
% in TeX

G:=Group("C5xC2^3.11D4");
// GroupNames label

G:=SmallGroup(320,898);
// by ID

G=gap.SmallGroup(320,898);
# by ID

G:=PCGroup([7,-2,-2,-2,-5,-2,-2,-2,560,589,1766,1731,226]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^5=b^2=c^2=d^2=e^4=1,f^2=c,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,e*b*e^-1=b*c=c*b,b*d=d*b,f*b*f^-1=b*c*d,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=e^-1>;
// generators/relations

׿
×
𝔽